Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Biomed ; 1(1): 14, 2020.
Article in English | MEDLINE | ID: covidwho-1515460

ABSTRACT

The global pandemic of COVID-19 has attracted extensive drug searching interets for the new coronavirus SARS-CoV-2. Although currently several of clinically used "old" drugs have been repurposed to this new disease for the urgent clinical investigation, there is still great demand for more effective therapies for the anti-infections. Here we report the discovery that an "old" drug Emetine could potently inhibit SARS-CoV-2 virus replication and displayed virus entry blocking effect in Vero cells at low dose. In addition, Emetine could significantly reduce the lipopolysaccharide (LPS) induced interleukin-6 (IL-6) protein level and moderately reduce the tumor necrosis factor (TNF-α) protein level in the M1 polarized THP-1 macrophages. In vivo animal pharmacokinetics (PK) study revealed that Emetine was enriched in the lung tissue and had a long retention time (over 12 h). With 1 mg/kg single oral dose, the effective concentration of Emetine in lung was up to 1.8 µM (mice) and 1.6 µM (rats) at 12 h, which is over 200-fold higher than the EC50 of the drug. The potent in vitro antiviral replication efficacy and the high enrichment in target tissue, combining with the well documented safety profiles in human indicate that low dose of Emetine might be a potentially effective anti-SARS-CoV-2 infection therapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43556-020-00018-9.

2.
J Virol Methods ; 295: 114185, 2021 09.
Article in English | MEDLINE | ID: covidwho-1243068

ABSTRACT

OBJECTIVE: Viral nucleic acid detection by real-time reverse transcription polymerase chain reaction (qPCR) is the current standard method for diagnosis of SARS-CoV-2 infection. However, due to low viral load in some COVID-19 patients, false negative results from this method have been repeatedly reported. METHOD: In this study, we compared the sensitivity and specificity of digital PCR (dPCR) in simulated samples and clinical samples with qPCR assay through a series of vigorous tests. RESULTS: The results showed that dPCR was more sensitive than qPCR especially for samples with low viral load (≤3 copies). In addition, dPCR had similar specificity as qPCR and could effectively distinguish other human coronaviruses and influenza virus from SARS-CoV-2. More importantly, dPCR was more sensitive than qPCR in detecting the virus in the "negative" samples from recurrent COVID-19 patients. CONCLUSIONS: In summary, dPCR could serve as a powerful complement to the current qPCR method for SARS-CoV-2 detection, especially for the samples with extremely low viral load, such as recurrent COVID-19 patients.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Viral Load , COVID-19/virology , Humans , RNA, Viral/genetics , Recurrence , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
BMC Infect Dis ; 20(1): 930, 2020 Dec 07.
Article in English | MEDLINE | ID: covidwho-962806

ABSTRACT

BACKGROUND: COVID-19 is a newly emerging disease caused by a novel coronavirus (SARS-CoV-2), which spread globally in early 2020. Asymptomatic carriers of the virus contribute to the propagation of this disease, and the existence of asymptomatic infection has caused widespread fear and concern in the control of this pandemic. METHODS: In this study, we investigated the origin and transmission route of SARS-CoV-2 in Anhui's two clusters, analyzed the role and infectiousness of asymptomatic patients in disease transmission, and characterized the complete spike gene sequences in the Anhui strains. RESULTS: We conducted an epidemiological investigation of two clusters caused by asymptomatic infections sequenced the spike gene of viruses isolated from 12 patients. All cases of the two clusters we investigated had clear contact histories, both from Wuhan, Hubei province. The viruses isolated from two outbreaks in Anhui were found to show a genetically close link to the virus from Wuhan. In addition, new single nucleotide variations were discovered in the spike gene. CONCLUSIONS: Both clusters may have resulted from close contact and droplet-spreading and asymptomatic infections were identified as the initial cause. We also analyzed the infectiousness of asymptomatic cases and the challenges to the current epidemic to provided information for the development of control strategies.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/transmission , China/epidemiology , Contact Tracing , Disease Hotspot , Disease Outbreaks , Female , Humans , Male , Molecular Epidemiology , Pandemics , Phylogeny , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL